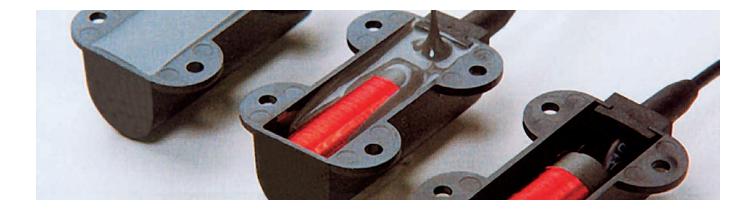


Produkt Information


Vergussmasse

Elan-tron®

PU 4110 / PH 4900

100:20

Hoch elastisches modifiziertes Polyurethan mit hoher Temperaturbeständigkeit

Vergussmassen

Casting compounds

Produktbeschreibung

Elan-tron® PU 4110 ergibt mit dem Härter Elan-tron® PH 4900 (Standardhärter) bzw. PH 4920 einen Formstoff mit hoher Kälteflexibilität und kautschukähnlichen Eigenschaften bis zu einer Temperatur von - 50 °C.

Anwendungsbereiche

Elan-tron® PU 4110 eignet sich aufgrund ihrer ausgezeichneten Kälteflexibilität, der extrem hohen Haftung auf vielen verschiedenen Untergründen sowie des verhältnismäßig hohen Temperaturindex von 150 °C besonders für den Einsatz in Geräten, die im Temperaturbereich von -50 bis 150 °C eingesetzt werden. Es eignet sich daher besonders für den Verguss druckempfindlicher Bauteile für Außenanwendungen sowie für explosionsgeschützte Bereiche. Durch die hohe chemische Beständigkeit eignet sich Elan-tron® PU 4110 außerdem sehr gut für den Einsatz der hiermit vergossenen Bauteile in feuchter, alkalischer und saurer Umgebung (z. B. Silos).

Eigenschaften des Isolierstoffes

- Formstoff mit kautschukähnlichen Eigenschaften
- geringer Schrumpf
- sehr gute dielektrische Eigenschaften
- sehr gute Haftung
- kälteflexibel bis 50 °C
- hohe Dauertemperaturbeständigkeit (150 °C)

Verarbeitung

Vorbehandlung der Bauteile: Die zu vergießenden Teile sollen trocken, sauber und fettfrei sein.

Vorbereitung der Komponenten: Elan-tron® PU 4110 enthält Pigmente und Additive, welche in gewissen Grenzen und in Abhängigkeit von den Lagertemperaturen zum Absetzen neigen. Daher ist sorgfältiges Aufrühren im Originalgebinde vor der weiteren Verarbeitung erforderlich.

Mischung: Elan-tron® PU 4110 und der Härter Elan-tron® PH 4900 bzw. 4920 werden in dem angegebenen Mischungsverhältnis zusammengegeben. Nach intensivem Mischen ist die Masse sofort gebrauchsfertig. Während des Mischvorganges ist darauf zu achten, dass möglichst wenig Luft eingerührt wird.

Applikation: Elan-tron® PU 4110 / Härter Elan-tron® PH 4900 bzw. 4920 kann sowohl manuell als auch mittels geeigneter Misch- und Dosieranlagen verarbeitet werden. Das Material kann optional vorbeschleunigt werden, um kürzere Aushärtungszeiten zu erreichen.

Härtungsbedingungen:

bei Raumtemperatur 6-8 h

Nur bei Raumtemperatur ausgehärtete vergossene Bauteile sollten erst 3-4 Tage nach dem Verguss mechanisch / elektrisch voll belastet werden. Um diesen Zeitraum zu verkürzen, können die vergossenen Bauteile nach Aushärtung zusätzlich getempert werden (80 °C / 12-16 h).

Lagerung: Elan-tron® PU 4110 und Härter Elan-tron® PH 4900 bzw. 4920 sind im ungeöffneten Originalgebinde mindestens 6 Monate haltbar. Wir verweisen zudem auf die auf den jeweiligen Gebindeetiketten angegebenen Haltbarkeitsdaten. Angebrochene Gebinde des Härters Elan-tron® PH 4900 bzw. 4920 sollten baldmöglichst aufgebraucht werden, da unter längerem Einfluss der Luftfeuchtigkeit die Reaktivität der Härterkomponente nachlassen kann.

Bei Temperaturen unter 5 °C kann der Härter Elan-tron® PH 4900 bzw. 4920 teilweise kristallisieren. Durch vorsichtiges, möglichst kurzzeitiges Erwärmen des gesamten Gebindeinhaltes auf max. 70°C lässt sich das Produkt wieder verflüssigen.

System Spezifikation

Eigenschaften	Bedingung	Harz	Härter	Einheit
Viskosität DIN 53019	25°C	6500 ± 1000	110 ± 30	mPa₊s
Dichte DIN EN ISO 2811-2	20°C	1.12 ± 0.05	1.23 ± 0.05	g/cm ³
Haltbarkeit	23°C	6	6	Monate

Typische System Eigenschaften

Eigenschaften	Bedingung	Wert	Einheit
Farbe Harz		weiß-beige	
Farbe Härter		braun transparent	
Viskosität IO-10-50 Harz	25°C	6800/6300	mPa _* s (0,17/1,7 sec ⁻¹)
Viskosität IO-10-50 Härter	25°C	-/140	mPa∗s (0,17/1,7 sec ⁻¹)
Mischungsverhältnis (Harz : Härter)		100:20	Gewichtsteile
Mischviskosität DIN 53019	25°C	4900	mPa₊s
Verarbeitungszeit (15 ml Ansatzvolumen)	23°C	40	min

Typische Formstoff Eigenschaften (Alterung vor Messung 24h/23°C + 16h/80°C)

Eigenschaften	Bedingung	Wert	Einheit
Wärmeleitwert DIN 52613		0,20	W/m∗K
Glasübergangstemperatur IEC 61006		< -75	°C
Temperaturindex IEC 216	Zugfestigkeit	150	°C
Linearer Ausdehnungskoeffizient Beck Test M 56	oberhalb tg	150-180 x 10 ⁻⁶	K ⁻¹
Dichte DIN 16945	20°C	1.16 ± 0.02	g/cm ³
Härte ISO 868		75 ± 5	Shore A
Zugfestigkeit DIN 53455/457		2	MPa
Biegefestigkeit			MPa
Durchgangswiderstand IEC 60455 Part 2	23°C	2.2 x 10 ¹⁴	Ω∗cm
nach 7 Tagen Wasserlagerung	53°C	1.6 x10 ¹⁴	Ω∗cm
Dielektrizitätszahl ε _r IEC 60250	23°C / 50 Hz	3.16	
	23°C / 1K Hz	2.92	
Durchschlagsfestigkeit IEC 60250	23°C (50% rF)	33	kV/mm
	23°C (7d Wasserlagerung)	22.3	kV/mm
Dielektrischer Verlustfaktor tan-δ IEC 60250	50Hz, 23°C, 50% rh	0.0298	
	1 KHz 23°C, 50% rh	0.0247	
	1MHz,23°C, 50% rh	0.0254	
Dielektrischer Verlustfaktor tan-δ IEC 60250	50Hz, 23°C, 50% rh	0.0314	
nach 7 Tagen Wasserlagerung	1 KHz 23°C, 50% rh	0.0254	
	1MHz,23°C, 50% rh	0.0283	
Kriechstromfestigkeit IEC 60112		600	CTI
Wasseraufnahme ISO 62	24h RT	0.35	%

Das Detail fürs Ganze.

Wickeldrähte Winding wires Kabel und Aderleitungen Cables and lead wires Metallgeflechte Metal braidings Isolierschläuche Insulating sleevings Schrumpfschläuche Shrinkable sleevings Flächenisolierstoffe Surface insulation materials Schichtpressstoffe Laminates Tränkmittel Impregnants Vergussmassen Casting compounds

Kaltenbach GmbH & Co KG Sirnauer Straße 48-50 D-73779 Deizisau

Telefon: +49 (0) 7153/6129-0 Telefax: +49 (0) 7153/6129-55 mail@kaltenbach-online.com kaltenbach-online.com

Mehr Information! *More informations!*

Unsere anwendungstechnische Beratung in Wort, Schrift und durch Versuche erfolgt nach bestem Wissen, gilt jedoch nur als unverbindlicher Hinweis, auch in Bezug auf etwaige Schutzrechte Dritter und befreit Sie nicht von der eigenen Prüfung der von uns gelieferten Produkte auf ihre Eignung für die beabsichtigten Verfahren und Zwecke. Anwendung, Verwendung und Verarbeitung der Produkte erfolgen außerhalb unserer Kontrollmöglichkeiten und liegen daher ausschließlich in Ihrem Verantwortungsbereich. Sollte dennoch eine Haftung in Frage kommen, so ist diese für alle Schäden auf den Wert der von uns gelieferten Ware begrenzt. Selbstverständlich gewährleisten wir die einwandfreie Qualität unserer Produkte nach Maßgabe unserer allgemeinen Verkaufs- und Lieferbedingungen.

